Dr. Patrick Webb opened the meeting with a discussion of the Swine ID Program. He noted that pork producers have voted in support of a mandatory premises registration program and animal identification. The Pork Industry Identification Working Group developed a set of program standards outlining the industry’s plan to achieve the goals of the National Animal Identification System (NAIS). Basically, the proposed program expands on existing identification requirements in place since 1989. The industry developed a Swine Identification Implementation Task Force to address the issues associated with implementing the proposed plan. The National Pork Board has entered into a cooperative agreement with United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) to promote premises registration among pork producers. To date, more than 41,000 swine premises have been registered. This equates to approximately 61 percent of the estimated premises.

Dr. John Korslund updated the committee on the recent African swine fever (ASF) outbreak in the Republic of Georgia. He and three other APHIS employees were detailed to the region to investigate the outbreak and offer recommendations for control and recovery. He described swine production in Georgia as composed of “backyard” type operations. There are approximately 500,000 pigs in Georgia with relatively little infrastructure to support the industry (i.e. no commercial-style operations, no packing plants, and no feed mills). ASF is believed to have entered the country through poor sanitation at the Port of Poti and was spread throughout the country before it was diagnosed. Infection results in significant mortality, reportedly with losses in excess of 70,000 pigs. Clinical signs and lesions are typical of severe septicemic diseases such as Classical swine fever or salmonella. He expressed concern regarding the ability to control the spread of the disease due to lack of significant infrastructure.

Dr. Troy Bigelow briefed the committee on a modeling program attempting to estimate the amount of Pseudorabies Virus (PRV) vaccine that would be needed to respond to an outbreak in a hog dense region of the United States. According to the model, which utilized data from North Carolina and Iowa, it is estimated that the industry would need 800,000 doses of vaccine within the first week and 12.5 million doses by the end of the outbreak. Bigelow was able to determine from the vaccine manufacturers that it would be possible to produce an adequate amount of vaccine if timely clearance was achieved through USDA. There was concern, however, that the domestic vaccine production capability may decline if there is a decline in the international market and that this availability should be revisited in five years.
Dr. Aaron Scott discussed efforts at the National Surveillance Unit (NSU) to develop a comprehensive swine surveillance program. The NSU is developing a plan based in part on a prioritized list of diseases of concern produced by the swine industry. He stressed the importance of the program design to trading partners, consumers, policy makers and the health of the swine industry. He noted that the program must be comprehensive across populations, diseases and species.

Lisa Ferguson provided an interpretation of the 30 Day Health Rule which places veterinarians’ accreditation at risk if they are not inspecting individual animals prior to shipment. According to APHIS’ interpretation of wording in 9CFR161.3(a)(2), pigs born into a herd participating in a herd health plan and being visited every 30 days by an accredited veterinarian must be individually inspected prior to shipment. Historically, a veterinarian was allowed to include these animals on a Certificate of Veterinary Inspection (CVI) following inspection of the herd. This interpretation would disallow that and could place the veterinarian in jeopardy of losing his/her accreditation. She suggested that the issue was that the vet should not attest to false statements on official documents and that the documents should be altered to accurately represent the activities of the veterinarian. Follow-up discussion expressed concern that veterinarians should not be altering official documents. A resolution was passed to request a change in the language of the Code of Federal Regulations (CFR) that would allow for the inclusion of animals born on the farm since the last 30 day visit to be included on a CVI based on visiting the herd rather than the individual animals.

Carter Black presented a report from the Feral Swine Subcommittee on PRV & Brucellosis committee meeting which was accepted and is included following this report.

Bigelow presented the committee with a plan to adopt a Hazard Analysis and Critical Control Points (HACCP) approach to PRV monitoring and program compliance that would replace the current State Status based on program standards approach. This proposal was in response to the requirement that APHIS, Veterinary Services (VS) codify program standards in the CFR and the necessity to keep the language as broad as possible to allow for future changes without the need to alter the CFR language. HACCP is commonly used by packing plants to minimize risks. He suggests expanding the concept to allow for a risk-based analyze at the state level to determine critical control points and risk levels. There was significant interest and much discussion with direction to continue to explore this opportunity.

The committee then approved five resolutions, referred to the Committee on Nominations and Resolutions.
The Subcommittee was called to order by the Chair at 1:00 p.m. on Monday, October 22, 2007. There were 49 attendees at the meeting, including eight members of the Subcommittee. Reports were provided on feral swine issues relating to brucellosis and pseudorabies. A summary of the reports is included below.

Dr. Joseph L. Corn, Southeastern Cooperative Wildlife Disease Study (SCWDS), University of Georgia, provided a report on development of the National Feral Swine Mapping System (NFSMS). SCWDS produced nationwide feral swine distribution maps in 1982, 1988 and 2004 by working directly with state and territorial natural resources agency personnel. In 1982, 17 states reported feral swine in a total of 475 counties. In 2004, 28 states reported feral swine in 1,014 counties. With support from United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS) the SCWDS has now developed the National Feral Swine Mapping System (NFSMS), an interactive data collection system to be used to collect and display real time data on the distribution of feral swine in the United States. The real time feral swine distribution maps will be produced using data collected from state and territorial natural resources agency personnel and from USDA-APHIS, Wildlife Services (WS). The real time map will be available to be viewed by the public on the NFSMS home page. Distribution data submitted by agency personnel will be evaluated by SCWDS on a continual basis, and the real time distribution map updated with verified additions on a monthly basis. Feral swine populations included in the map will be those determined to be established and breeding. Updated maps will be available to be viewed and downloaded from the web site.

Dr. Corn, next provided a report on disease exposure in feral swine populations geographically associated with high densities of transitional swine premises and commercial swine production. Surveys for evidence of exposure to pseudorabies virus (PRV), Brucella suis (SB), swine influenza virus (SIV) (human-like H IN I, reassortant type H IN 1, H 1 N2-like IH IN1 and IH3N2), porcine circovirus 2 (PCV 2), and porcine respiratory and reproductive syndrome virus (PRRSV) in feral swine were conducted in areas where feral swine were geographically associated with high densities of transitional swine premises in South Carolina and in areas where feral swine were geographically associated with high densities of commercial swine production in North Carolina. These areas were identified using overlays of maps of the distribution of feral swine in the United States, maps of the distribution of transitional swine premises in South Carolina, and county-level maps of the distribution of commercial swine premises in North Carolina.

Dr. Tom Ray, North Carolina Department of Agriculture and Consumer Services, gave an update on feral swine programs in North Carolina. Of the 10 largest hog producing counties in the U.S., eight of these 10 counties are in North Carolina. Swine inventories are over nine million with the vast majority located in the eastern third of the state. Feral swine have been found in 84 of the 100 counties in the state. In addition to surveillance sampling by USDA-APHIS-WS and SCWDS in eastern North Carolina, hunter sampling has occurred in other parts of the state, particularly in and around the Great Smokey Mountains National Park. Sampling over the past three years has shown no positive samples for PRV, SB or CSF in the eastern third of the state where the vast majority of North Carolina's commercial swine industry is located. A small number of PRV positive samples have been found in western North Carolina, and the number is increasing. Because feral swine are the greatest and primary risk for spreading PRV and SB to our commercial swine industry, an objective-based surveillance plan, or Hazard Analysis Critical Control Points (HACCP), is suggested, based on a sound, reliable epidemiological investigation of prevalence, statistical sampling and incidence rates, combined with education, outreach and regulatory involvement.
Dr. Troy Bigelow, USDA-APHIS-VS gave an update on USDA-APHIS-VS programs related to feral swine. Feral swine continue to be a threat to domestic swine. Feral swine, being carriers of PRV and brucellosis, have transmitted the disease to herds that allow or potentially allow exposure to feral swine. This presentation reviews the number of indemnified herds due to feral or potential feral swine exposures and discusses possible ways to modify the regulations to account for different risks in different states. HACCP is a systematic thought process used as the regulatory background in other agencies to mitigate risks. HACCP principles, if adopted, could be used to mitigate risks of PRV and swine brucellosis from entering the commercial compartment. The HACCP principle will be discussed as a way to protect the commercial compartment from possible risks.

Mr. Seth Swafford, USDA-APHIS, Wildlife Services (WS) gave an update on USDA-APHIS-WS related to feral swine. As part of an intra-agency initiative, WS has continued to partner with Veterinary Services to design and implement a nationwide surveillance approach regarding sampling feral swine for classical swine fever (CSF). As an equally important component, these APHIS agencies have included monitoring two diseases that are endemic in feral swine populations. Monitoring for *Brucella suis* (SB) and pseudorabies virus (PRV) has occurred over the last three years in feral swine populations and has only been possible with support provided by State Departments of Agriculture and State Wildlife Agencies. This approach has truly become an inter-agency effort and represents one of the largest coordinated wildlife disease surveillance efforts implemented by Wildlife Services. Information provided below is a general compilation of activities conducted between October 2006 and September 2007 and the planned approach for the following year. The inter-agency effort involved sampling 2029 feral swine from 20 States as one surveillance stream to support a comprehensive swine disease surveillance program.

Classical swine fever surveillance remains the emphasis of the effort and is based on serological analyses performed by VS Foreign Animal Disease Diagnostic Laboratory in Plum Island, New York. Classical swine fever was not detected in any of the samples collected during the sampling period. Surveillance for SB and PRV is also serologically based, but samples are analyzed at State or University laboratories. This is an important distinction between the two components of the effort, foreign animal disease surveillance and endemic disease monitoring, and establishes the local experts as the leading authority. *Brucella suis* and PRV was detected in many, but not all, local populations of feral swine. Data are presented from three states, Oklahoma, Florida, and South Carolina, to highlight the disparity between apparent sero-prevalence findings in feral swine. These States are used to only highlight the differences between apparent sero-prevalence findings and are not meant to implicate these states in any way. Apparent sero-prevalence of SB and PRV in feral swine from these states ranged from 0.6 percent to 19.0 percent for SB and 3.8 percent to 26.5 percent for PRV. These findings document the large degree of variability in which SB and PRV circulate in feral swine populations. Monitoring endemic diseases in feral swine should continue as a long term objective to establish baseline data, monitor for epidemics in feral swine which could increase risk to domestic swine, aid in response and eradication if necessary and leverage information and education to local counties. The intra-agency initiative has planned to sample approximately 2,100 feral swine in 30 States during the next sampling period.

Ned Hahn, College of Veterinary Medicine, University of Illinois presented Feral Pig PRV: What is in Your Neighborhood? The overlap of feral and domestic swine herds and the traffic among transitional herds and shooting preserves poses a high risk of reintroduction of PRV in commercial herds. There are markers in the PRV DNA that will assist in identifying the source of infection. Pinpointing the source of infection will dictate appropriate management changes needed to mitigate the risk. Improved preparedness presents confidence to the world that our nation can handle the persistent reservoir of infection. The risk of infection of domestic swine from the feral reservoir will not diminish. The route of transmission can occur by oral as well as venereal routes and marker technology can differentiate viruses to establish sources of infection.
There was a discussion of the status of Transitional Herds. This will require more discussion as the nation moves toward the OIE Free status.