ORV STRATEGY USING RABORAL V-RG® FOR CONTROLLING RACOON RABIES

Emily W. Lankau DVM, PhD
Scientific Consultant
Merial, A Sanofi Company
RABORAL V-RG®: Product Description

Produced by Merial Limited - Athens, Georgia

Two formats for wildlife species:

<table>
<thead>
<tr>
<th>Fishmeal polymer bait: fishmeal, tetracycline, polymer, compressed extruded block containing vaccine filled sachet – now white plastic sachet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coated sachet: same vaccine-filled sachet covered in paraffin waxes plus fishmeal crumbles and cod liver oil</td>
</tr>
</tbody>
</table>

US Field Immunogenicity/Efficacy proven: Raccoons, Coyotes, Gray Foxes, testing in skunks

Excellent Vaccine Thermostability

Bait Thermostability – suitable for warm temperatures (<30 C) for 3-5 days; can last 2-3 weeks in the field under moderate temp (25-30 C)

ORV = oral rabies vaccine
RABORAL V-RG®

- A recombinant vaccinia virus expressing the rabies glycoprotein
- Only US licensed oral rabies vaccine for wildlife
 - Raccoon and coyote
- Licensed for red foxes in Europe
- Applied experimentally:
 - Gray foxes in Texas
 - Raccoons in Canada
 - Red fox, golden jackal in Israel
 - Raccoon dogs in South Korea
 - Skunks in Texas
US ORV history of success

ORV programs targeting wild raccoons implemented in the 1990s to prevent expansion of raccoon rabies variant

Raboral V-RG successes:

- Elimination of canine variant in Texas coyotes
- Nearing elimination of Texas gray fox variant
- Local elimination of raccoon variant transmission
- Prevention of westward expansion of raccoon variant
Wildlife rabies control and prevention

- Ultimate goal is preventing human rabies
 - Domestic animal vaccination barrier
 - Wildlife management and vaccination
 - Education

- Wildlife rabies management is expensive, but is also cost-effective
 - Reduced PEP costs
 - Reduced risks to human life

- ORV programs must be tailored to the target species demographics and ecology

- The type of ORV is very important but **how it is used is critical to success**
Wildlife rabies control

Product + Program + Perseverance (Funding)
Wildlife rabies control

Product + Program + Perseverance (Funding)

Product/vaccine characteristics:
- Safety in target species
- Safety in non-target species
- Duration of immunity
- Thermo-stability of vaccine
- Thermo-stability of bait matrix
- Attractant suitable for target species
- Shelf-life/Storage conditions/Handling in the field
- Flexibility of distribution – airplane, helicopter, vehicle, bicycle, hand
Wildlife rabies control

Product + Program + Perseverance (Funding)

Program characteristics:
- Pre-ORV epidemiology analysis
- Strategic goals – barrier, prevent spread, elimination, timeline
- Geographic barriers (mountains, rivers, roadways)
- Number of campaigns per year – resource management
- Bait density – Optimal number of doses to vaccinate sufficient number of target species over time
- Surveillance before and after ORV campaigns
- Communications of ORV campaigns to the public
- Distribution methods – one or multiple channels/bait uptake rates
- Quarantine of animal movements (translocation)
Wildlife rabies control

Product + Program + Perseverance (Funding)

Program characteristics:
- Pre-ORV epidemiology analysis
- Strategic goals – barrier, prevent spread, elimination, timeline
- Geographic barriers (mountains, rivers, roadways)
- Number of campaigns per year – resource management
- Bait density – Optimal number of doses to vaccinate sufficient number of target species over time
- Surveillance before and after ORV campaigns
- Communications of ORV campaigns to the public
- Distribution methods – one or multiple channels/bait uptake rates
- Quarantine of animal movements (translocation)
Bait density vs. strategic goal

- Different strategic goals require different program structures:
 - Creating a barrier to entry
 - Preventing spread (containment)
 - Elimination
 - Decrease human exposure
 - Eliminate rabies variant locally/regionally
 - Eliminate rabies variant nationally

- Different strategic goals may also require different bait densities
 - Timelines
 - Resource stability
 - Political will
Vaccinating wildlife populations

- Effective vaccination of dynamic wildlife populations is challenging

Field data: Measures of success
- Bait uptake – biomarker
- Rabid animal reports (passive vs. active surveillance)
- Serology
Target species characteristics: Raccoon

- Understanding local raccoon ecology and demographics is important for ORV program design
 - Habitat use and behavior
 - Breeding cycle
 - Food sources and feeding habits
 - Population turnover – average age of adult
 - Population structure – juveniles vs. adults
 - Presence of non-target species
 - Population density
<table>
<thead>
<tr>
<th>Location</th>
<th>Area</th>
<th>Goal</th>
<th>Bait Density</th>
<th>Years to Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape Cod, MA (isthmus) 2006-present</td>
<td>~400-700 km²</td>
<td>Local Elimination</td>
<td>100+/km²</td>
<td>6+ yrs</td>
</tr>
<tr>
<td>Anne Arundel Co., MD (peninsula/island)</td>
<td>186 km²</td>
<td>Local Elimination</td>
<td>100/km²</td>
<td>4 yrs</td>
</tr>
<tr>
<td>Long Island, NY (island)</td>
<td>~1500 km²</td>
<td>Local Elimination</td>
<td>250/km²</td>
<td>5 yrs</td>
</tr>
</tbody>
</table>
Bait density versus time to achieve strategic goal

<table>
<thead>
<tr>
<th>Location</th>
<th>Area</th>
<th>Goal</th>
<th>Bait Density</th>
<th>Years to Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape Cod, MA (isthmus) 2006-present</td>
<td>~400-700 km²</td>
<td>Local Elimination</td>
<td>100+/km²</td>
<td>6+ yrs</td>
</tr>
<tr>
<td>Anne Arundel Co., MD (peninsula/island)</td>
<td>186 km²</td>
<td>Local Elimination</td>
<td>100/km²</td>
<td>4 yrs</td>
</tr>
<tr>
<td>Long Island, NY (island)</td>
<td>~1500 km²</td>
<td>Local Elimination</td>
<td>250/km²</td>
<td>5 yrs</td>
</tr>
<tr>
<td>West Central Texas (gray fox)</td>
<td>40,000-80,000 km²</td>
<td>Regional Elimination</td>
<td>25-38/km²</td>
<td>15+ yrs</td>
</tr>
<tr>
<td>South Texas (coyote)</td>
<td>20,000-50,000 km²</td>
<td>Regional Elimination</td>
<td>25-38/km²</td>
<td>12 yrs</td>
</tr>
<tr>
<td>Location</td>
<td>Area</td>
<td>Goal</td>
<td>Bait Density</td>
<td>Years to Goal</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Cape Cod, MA (isthmus) 2006-present</td>
<td>~400-700</td>
<td>Local Elimination</td>
<td>100+/km²</td>
<td>6+ yrs</td>
</tr>
<tr>
<td>Anne Arundel Co., MD (peninsula/island)</td>
<td>186 km²</td>
<td>Local Elimination</td>
<td>100/km²</td>
<td>4 yrs</td>
</tr>
<tr>
<td>Long Island, NY (island)</td>
<td>~1500 km²</td>
<td>Local Elimination</td>
<td>250/km²</td>
<td>5 yrs</td>
</tr>
<tr>
<td>West Central Texas (gray fox)</td>
<td>40,000-80,000 km²</td>
<td>Regional Elimination</td>
<td>25-38/km²</td>
<td>15+ yrs</td>
</tr>
<tr>
<td>South Texas (coyote)</td>
<td>20,000-50,000 km²</td>
<td>Regional Elimination</td>
<td>25-38/km²</td>
<td>12 yrs</td>
</tr>
<tr>
<td>Cape Cod, MA (isthmus) 1994-2004</td>
<td>420-712</td>
<td>Barrier</td>
<td>100/km²</td>
<td>10+ years, breached ($$)</td>
</tr>
<tr>
<td>Cape May, NJ (peninsula)</td>
<td>552 km²</td>
<td>Barrier</td>
<td>64/km²</td>
<td>3 yrs, discontinued</td>
</tr>
<tr>
<td>Ohio-Penn Border (mainland)</td>
<td>10-12k km²</td>
<td>Barrier</td>
<td>75-150/km²</td>
<td>On-going</td>
</tr>
</tbody>
</table>
Case study: Long Island
Strategic goal - Elimination

- Rabid raccoons first detected 1993
- Epizootic in Nassau Co. by 2004

Long Island characteristics
- Highly populated, heterogenous landscape
- Raccoons primary susceptible species; no skunks

Early point-infection-control intervention unsuccessful
- Lower bait density used, less intensive effort

2006 – 2010 - intensive campaign to mitigate human health risks
- Higher-density baiting (target bait density = 250/km²)
- Multi-modal approach (helicopter and ground distribution)
- Biannual baiting – summer and fall to target juveniles

Specchio S. Feb 23, 2011. CU establishes a raccoon rabies-free zone in Long Island. Cornell Chronicle Online
Case study: Long Island

Case study: Long Island

- Post-baiting serology showed a steady increase in seroconversion
 - Within two years, ~30% seropositive (*at 0.5 IU/ml)
 - Concurrent decline in rabid raccoon reports
 - Raccoon variant eliminated from Long Island by 2011

- Intensive program economically viable if elimination is rapid
 - Similar findings in previous focal elimination campaigns
 - e.g. Anne Arundel Co., MD

- Maintenance of raccoon rabies free zone requires continued commitment to maintaining an ORV barrier
 - Loss of funding and political will can permit re-establishment of rabies
 - e.g. Cape Cod, MA; Cape May, NJ

Bait density considerations summary

- Some ORV program elements are more malleable than others
 - Bait density can be adjusted to reach management goals

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relationship to bait density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raccoon density</td>
<td>Positive correlation – goal 1:1+</td>
</tr>
<tr>
<td># campaigns/year</td>
<td>Annual versus biannual</td>
</tr>
<tr>
<td></td>
<td>Timing related to breeding season/surveillance</td>
</tr>
<tr>
<td>Distribution method</td>
<td>Negatively correlated with degree of habitat targeting</td>
</tr>
<tr>
<td>Strategic goal</td>
<td>Negative correlation with time to reach goal</td>
</tr>
<tr>
<td></td>
<td>higher bait density for rapid elimination, focal area</td>
</tr>
<tr>
<td></td>
<td>lower bait density to hold barrier w/ natural barriers</td>
</tr>
<tr>
<td>Time to reach goal</td>
<td>Negatively correlated to baiting intensity</td>
</tr>
<tr>
<td></td>
<td>reduced program costs by achieving success faster</td>
</tr>
</tbody>
</table>
Key take-away points

- ORV programs have made strong contributions to rabies control and prevention
 - Successful elimination of canine rabies variant from the US
 - Reduction in wildlife virus variant circulation nationally
 - Created barrier to prevent raccoon variant expansion

- Bait density and program strategy are critical for success
 - Bait density must match target population, goals, and timelines
 - Appropriate bait density is species and landscape dependent

- Ultimate goal is to mitigate human health risks and to reduce rabies prevention costs
 - ORV is a cost-effective strategy
 - ORV success is jeopardized by insufficient long-term funding
Rabies Prevention – Three Layers of Protection

Family:
- Avoid dog/cat bites
- Proper care of bite wounds
 - Wash with soap/water
 - Seek medical advice

Domestic animals:
- Vaccinate dogs, cats, horses
- Vaccinate show livestock

Wildlife:
- Rabies does not always stay wild!
- Minimize pet food access
- Use gloves handling bats
- Report strange acting wildlife

Rabies prevention is One Health in action!
Acknowledgments

- MANY thanks to all of the partners at the state and national level who maintain wildlife rabies control programs in the face of budgetary restrictions and challenging circumstances
- Many thanks to Merial VPH for the opportunity to work on this very important topic

Working together, we can defeat rabies!
Thank you for your time and attention!

Questions? Comments?

Emily W. Lankau
LandCow Consulting
Athens, GA
landcow.ecohealth@gmail.com