Spatio-temporal Pattern and Eco-climatological Drivers of Striped Skunk Rabies

Kansas State Veterinary Diagnostic Laboratory
Manhattan, KS
Bayesian Spatiotemporal Pattern and Eco-climatological Drivers of Striped Skunk Rabies in the North Central Plains

Ram K. Raghavan1*, Cathleen A. Hanlon2†, Douglas G. Goodin3‡, Rolan Davis1*, Michael Moore1*, Susan Moore1*, Gary A. Anderson1*

1 Kansas State Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America, 2 Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, 3 Department of Geography, College of Arts and Sciences, Kansas State University, Manhattan, Kansas, United States of America

* These authors contributed equally to this work.
† CAH, DGG, and GAA also contributed equally to this work.
‡ rkraghavan@vet.k-state.edu
• Rabies
 • Oldest known zoonosis
 • Continues to kill people throughout the world
 • In N. America, it is mostly a wildlife disease
 • Mostly circulated by Carnivora and Chiroptera
 • All Skunks are susceptible but stripped skunks are most commonly reported
Distribution
• Retrospective case-control design
• Case reports from January 2007 – December 2013
 • 1027 tests
 • 705 negative/318 positive
 • 33 unsuitable for testing
• Address information from submission forms
 • Urban vs. rural
• Disease ecology influenced by environment and climate
• Physical environment
 • Land cover/land use
 • Land cover fragmentation
• Climate
 • Land surface temperature
 • Diurnal temperature range
 • Humidity
\[
\log[\pi_{ij}] = \beta_0 + \beta_{ij} v_{k_{ij}}
\]

\[
\pi_{ij} = p(y_i = 1 | x_i) \quad x_{ij} = (x_{ij1}, \ldots, x_{im})
\]

\[
\log\text{it} \left[\pi_{ij} = \log \left[\frac{\pi_{ij}}{1 - \pi_{ij}} \right] = x_i \beta \right]
\]
\[\log(\pi_{ij}) = \beta_0 + u_i + v_i + \gamma_j \]

\[u_i \sim CAR \]

\[v_i \sim Normal(0, \sigma_v^2) \]

\[\gamma_j \sim N(\gamma_{j-1}, \tau_\gamma^{-1}) \]
\[
\log(\pi_{ij}) = \beta_0 + u_i + v_i + \gamma_j + \psi_{ij}
\]

\[
\psi_{ij} \sim (\psi_{ij-1} \tau_\psi)
\]
<table>
<thead>
<tr>
<th>Model</th>
<th>\bar{D}</th>
<th>P_D</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>1320</td>
<td>81</td>
<td>1401</td>
</tr>
<tr>
<td>(1b)</td>
<td>1345</td>
<td>114</td>
<td>1459</td>
</tr>
<tr>
<td>Covariatee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>952</td>
<td>32</td>
<td>984</td>
</tr>
</tbody>
</table>

\bar{D} = posterior mean deviance, calculated as $\bar{D} = E[D]$, where $D = -2\log p(y|\theta)$.

P_D = Posterior mean deviance—deviance of posterior means, calculated as $P_D = E_{\theta^y}[D] - D(E_{\theta^y}[\theta])$.

DIC = Deviance information criterion, analogous to the frequentist AIC estimate and estimated as $DIC = D(\tilde{\theta}) + 2P_D$.

eSeveral covariate models (which also included random effect terms) were fitted starting with a model that included all covariates that were screened in the univariate procedure with a liberal $p \leq 0.2$, followed by the removal of one covariate at a time from the Bayesian hierarchical models. The removal of % grassland area, minimum land surface temperature and an interaction term, ‘diurnal temperature range x % mixed forest area’ one at a time, in that order resulted in models with DIC values of 1261, 1014, and 1008. To the final covariate model, a random effect space-time term, Ψ_y was inserted, which resulted in a DIC value of 1023, indicating poor performance. Other previously removed covariates did not re-enter the final covariate model.

doi:10.1371/journal.pntd.0004632.t003
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Partial model (1a)</th>
<th>Partial model (1b)</th>
<th>Covariate model</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.35 ± 0.04</td>
<td>0.33 ± 0.04</td>
<td>0.28 ± 0.03</td>
</tr>
<tr>
<td>u_i</td>
<td>0.04 ± 0.00</td>
<td>0.06 ± 0.02</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>v_i</td>
<td>0.18 ± 0.02</td>
<td>0.11 ± 0.01</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>y_j</td>
<td>0.23 ± 0.05</td>
<td>0.20 ± 0.05</td>
<td>0.21 ± 0.05</td>
</tr>
<tr>
<td>Ψ_{ij}</td>
<td>-</td>
<td>-0.03 ± 0.05</td>
<td>-</td>
</tr>
</tbody>
</table>

Random effect terms (Mean ± SD):

Mean and standard deviation correspond to the posterior estimates for the hyperparameters τ_u, τ_v, τ_y, and τ_q in the three Bayesian models present above.

Fixed effect covariates (Odds ratio, 95% Credible Intervals):

- β_1 (% developed—low intensity areas) - $3.41 \ (2.01, 3.83)$
- β_2 [Total edge contrast index (fragmentation)] - $1.70 \ (1.26, 2.81)$
- β_3 (Diurnal temperature range) - $0.54 \ (0.27, 0.91)$

The odds ratio and credible intervals correspond to the median of the posterior predictive distributions of the covariate model.

β_0 is intercept in all models, representing positive striped skunk rabies infection in all locations in all years, and u_i and are v_i random terms accounting for spatially structured variation in striped skunk rabies infection and unstructured heterogeneity in the data, respectively. y_j and Ψ_{ij} terms represent non-parametric time trend and spatio-temporal interactions, respectively. Information on the choice of priors for these terms are provided in the text.
• Disease levels are stable
• Significant environmental factors behind disease prevalence
• Passive surveillance can be useful
• Thank you!