New molecular approaches to AMR testing

Laura Goodman
Cornell University
Animal Health Diagnostic Center &
NY State Veterinary Diagnostic Laboratory
laura.goodman@cornell.edu
Why do we need to genetically “predict” antimicrobial resistance in animal health?
Bacterial **whole genome sequencing** in vet diagnostics

- Performed on **cultures** (costs ~$200)
- Nationally harmonized lab procedures (with FDA/CDC/state health)
- Confirms species, subspecies, isolate relatedness
- Large databases mined to predict features (functional genomics):
 - Serotype
 - Virulence factors
 - Antibiotic resistance gene (ARG) profile

National CARB veterinary surveillance project using WGS

- FDA Veterinary Laboratory Investigation and Response Network
 - 25 vet diagnostic source labs
 - ~2,000 isolates collected in 2017
 - *Salmonella* (all hosts)
 - *E. coli* (dogs)
 - *S. pseudintermedius* (dogs)
 - “Other” (2018)
 - Including whole genome sequencing on a subset (done by 5 additional vet labs) uploaded to NCBI in near real-time
 - NARMS integration
Metadata protections

<table>
<thead>
<tr>
<th>Data included</th>
<th>Not included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host species</td>
<td>VDL accession number</td>
</tr>
<tr>
<td>Sample type (e.g. feces, respiratory, wound swab)</td>
<td>Referring DVM</td>
</tr>
<tr>
<td>Collection date</td>
<td>Animal owner</td>
</tr>
<tr>
<td>State of origin</td>
<td>Animal name</td>
</tr>
<tr>
<td>Case type</td>
<td></td>
</tr>
<tr>
<td>Lab methods</td>
<td></td>
</tr>
</tbody>
</table>
Working towards animal health representation in the NCBI database

<table>
<thead>
<tr>
<th>Organism</th>
<th>Total isolates (10/22/19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>235,207</td>
</tr>
<tr>
<td>E. Coli</td>
<td>87,471</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>44,737</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>29,306</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>17,982</td>
</tr>
<tr>
<td>Staphylococcus pseudintermedius</td>
<td>695</td>
</tr>
</tbody>
</table>

Rethinking the antibiogram: The ARG heat map

Class
- β-Lactam
- Aminoglycoside
- Sulfonamide
- Tetracycline
- Phenicol
- Trimethoprim
- Fosfomycin
- Fluoroquinolone
- Antiseptic

Veterinary *Salmonella*

Ceric et al., BMC Vet 2019
FDA Vet-LIRN, data available at ncbi.nlm.nih.gov/pathogens/
Distribution of ARGs in veterinary *Salmonella* by Distance to Human Cases

FDA Vet-LIRN, data available at ncbi.nlm.nih.gov/pathogens/
Most extreme cases highlight role of companion animals in AMR

Canine lung (2017)
- aac(3)-Iid (gentamicin)
- aadA1 (streptomycin)
- aph(3")-Ib (streptomycin)
 - aph(3')-Ia (kanamycin)
- aph(6)-Id (streptomycin)
- blaCMY-2 (penicillins, amoxi-clav, cephalosporins)
- blaTEM-1 (penicillins)
- catA1 (phenicols)
- dfrA14 (trimethoprim)
- mph(A) (macrolides)
- qacL (disinfectants)
- sul2, sul 3 (sulfonamides)
- tet(B) (tetracycline)
- gyrA mutations (fluoroquinolones)

Canine lung (2018)
- aac(3)-Iid (gentamicin)
- aadA1, A2, A5 (streptomycin)
- aph(3")-Ib (streptomycin)
 - aph(3')-Ia (kanamycin)
- aph(6)-Id (streptomycin)
- blaEC (cephalosporins)
- blaTEM-1 (penicillins)
- catA1, cmlA1, floR (phenicols)
- dfrA12, 17 (trimethoprim)
- Inu(F) (lincosamide)
- mph(A) (macrolides)
- qacL, qacEdelta1 (disinfectants)
- sul1, sul2, sul 3 (sulfonamides)
- tet(B, M) (tetracycline)
Most extreme cases

 Nearly pan-resistant *E. coli* from canines

- 6 *E. coli* isolates with ≥ 15 ARGs in Vet-LIRN CARB collection ($n = 333$)
 - 3* serotypes (O8:H9, O9:H10, O89:H9)
 - 5 different MLST patterns
 - No shared SNP clusters

*One only had H antigen predicted (H9)
Culture-independent AMR detection

- Week 1
 - Clostridiales

- Week 2
 - Pseudomonales

- Week 3

- Week 4

Collaboration with Kevin Cummings and Janet L. Swanson Wildlife Hospital
Culture-independent AMR detection

Relative Abundance

Week 1 Week 2 Week 3 Week 4

β-lactam Aminoglycoside Macrolide Tetracycline Phenicol Other

Collaboration with Kevin Cummings and Janet L. Swanson Wildlife Hospital
Take-home points

1. People and animals share pathogens and pathogens share genes

2. By monitoring ARGs in animal populations, we can better protect both animal and human health
Acknowledgments

Cornell University CVM
Patrick Mitchell
Renee Anderson
Brittany Chilson
Rebecca Franklin-Guild
Anil Thachil
Belinda Thompson
Lorin Warnick
François Elvinger

FDA Vet-LIRN
• Olga Ceric
• Sarah Nemser
• Renate Reimschuessel

NY Integrated Food Safety Center of Excellence
• Martin Wiedmann
• Renato Orsi
• Gen Meredith
• Andie Newman – NYSDOH

CDC NCEZID
• Megin Nichols
• Dawn Sievert
• Misha Robyn

NARMS
• Greg Tyson - FDA
• Heather Tate – FDA
• Jean Whichard - CDC

USDA APHIS NAHLN
• Beth Harris