Wisconsin Bovine Tuberculosis Updates

Elisabeth Patton
USAHA TB subcommittee
October 2019
TB, one year and counting updates

• Where did we start?
• What have we done?
• What’s next?
Wisconsin TB Response Plan
2015 TB case response

Jan 2015
Patient begins work on farm

Apr 2015
Initial TB evaluation, Patient placed in isolation

4/17/15
MTBC culture: positive. LHD notifies WTBP

4/29/15
DHS notifies DATCP of farm worker diagnosed with *M. bovis*

5/18/15
31 cattle screen positive; herd quarantined, confirmatory tests performed

5/26/15
Cattle tissues negative for TB; herd quarantine ended

9/14/15
Screening tests repeated for cattle herd

9/21/15
All cattle negative on confirmatory test; herd quarantine ended

Mar 2015
Patient’s signs and symptoms begin

Apr 2015
WSLH runs AFB-smear and NAAT: both positive

4/28/15
CDC identifies isolate as *M. bovis*

5/15/15
Screening tests performed on ~1500 cattle at worker’s farm

5/21/15
1 suspect on confirmatory test; animal euthanized, tissues sent for testing

Jul 2015
Patient released from isolation (no longer contagious)

9/17/15
28 cattle screen positive; herd quarantined, confirmatory tests performed
TB Testing in Cattle

- Caudal fold tuberculin test (CFT)
 - Screening test for bovine TB
 - Purified protein derivative of bovine tuberculin- intradermal injection in the caudal tail fold

- Comparative cervical tuberculin test (CCT)
 - Confirmatory test for bovine TB
 - Purified protein derivatives of bovine and avian tuberculin- intradermal injection in the neck
Oct 2018 Slaughter Trace Investigation
<table>
<thead>
<tr>
<th>Assess test</th>
<th>CFT Total</th>
<th>CCT Total</th>
<th>CCT Neg</th>
<th>CCT Suspect</th>
<th>CCT Reactor</th>
<th>Gamma Negative</th>
<th>Gamma Positive</th>
<th>Gamma Total</th>
<th>M. bovis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2064</td>
<td>48</td>
<td>38</td>
<td>7</td>
<td>3</td>
<td>31</td>
<td>17</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2035</td>
<td>44</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1957</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2003</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2044</td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2086</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>(Nov 19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>12189</td>
<td>153</td>
<td>143</td>
<td>7</td>
<td>3</td>
<td>36</td>
<td>17</td>
<td>53</td>
<td>9</td>
</tr>
</tbody>
</table>
M. bovis Phylogenetic Tree
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18-9398_WI_Dairy_18A_1LNAB</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-9396_WI_Dairy_18A_1LNHD</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All isolates in 17B3 share this SNP
Wisconsin Dairy Farm Share by Herd Size*

In 2017, two-thirds of Wisconsin’s dairy farms had 100 cows or less; the proportion of very large herds of 500+ cows remains relatively small at 5.4%.

- 500+ Head: 5.4%
- 200-499 Head: 11.2%
- 100-199 Head: 18.4%
- 20-49 Head: 22.2%
- 50-99 Head: 34.9%
- 1-19 Head: 7.9%

Total WI Dairy Farms - 2017: 8,327

Source: USDA/NASS, 2017 Census of Agriculture

*Operations with Milk Sales

Oct 2019
7500 herds
Wisconsin Monthly Dairy Farms Statistics

Number of Licensed Dairy Herds: 7,476 herds (October 1, 2019)
Number of Dairy Cows: 1,267,000 dairy cows (September 2019)
Average Number of Cows Per Dairy Farm: 169 dairy cows (September 2019)
Total Monthly Milk Production: 2.52 billion pounds (September 2019)
Monthly Milk Production Per Cow: 1,985 pounds or 231 gallons
Daily Milk Production Per Cow: 66 pounds or 7.7 gallons

Source: Wisconsin Agricultural Statistics Service (WASS)
In State Traces

- Over 300 traces
 - Multiple legs to some locations
 - Market
 - Buyers
 - Slaughter
Distributions of Trace Cases in EMRS

275 Out of State traces
Trace Herd Investigations

• Contact herds

• Contact trace in/trace out herds
 – Sales Records from Dealers/Markets

• Process
 – Complete Epidemiology form
 – Breeding animals
 – Feeder Animals
 – Determine next steps
 – Herd quarantine
 – Herd testing
 – Restricted movement to slaughter
 – Herd plan

https://www.etsy.com/listing/609849165/cow-cookie-cutter-by-ecrandal?gpla=1&gao=1&gclid=EAIaIQobChMIuIr5wo_k3gIVEtbACh01VAHdEAQYAlABEgKSuvD_BwE
Surveillance in White-tailed Deer

- Notification of positive dairy farm came approximately 3 weeks before the start of the traditional gun deer season in the state
- Worked quickly to mobilize to get white-tailed deer samples from 9 townships surrounding positive dairy farm
- Low deer density/habitat in comparison to the remainder of the counties
- A total of 232 white-tailed deer were tested for bovine tuberculosis (bTB) from the fall hunting season.
Surveillance in White-tailed Deer

- Used existing system in place for CWD head sampling collection
- Staffed for opening weekend
- 4 locations in the 9 township area
- Collected heads taken to DNR CWD processing center for sample collection
Surveillance in White-tailed Deer

• Samples collected: Medial Retropharyngeal, Parotid, and Submandibular lymph nodes.

• Pooled geographically in groups of 5-6 animals for culture submission

• Half of samples from each animal kept frozen in house for follow-up should culture identify a positive pool

• Worked closely with our partners at DATCP, the Wisconsin Department of Health Services (DHS) and the U.S. Department of Agriculture (USDA) to develop surveillance plan

• Plan to continue for minimum of 3 years.
Wildlife Sampling

• Wildlife Services
 – Trapping mesocarnivores
 – Raccoons, opossums
 – DATCP/USDA VS sampling
 – USGS laboratory
 – Collecting lymph nodes 2019, 2020
 – 10 raccoons
 – 6 opossums
 – NGL
 – All pending cultures
Lessons Learned

• One Health
 – Human WGS prevented a lot of testing
 – Trace backs- source of infection
 – Established communication plan with other agencies
 – Public Health
 – Department of Natural Resources
 – Proactive Human Health Programs needed
 – Producer driven
Lessons Learned

• Trace Investigations
 – Official Identification Needed
 – Farm of origin
 – Recorded at points of concentration

• Unified message to producers/practitioners
 – Joint public meetings with USDA/Public Health/DNR