Risk Assessment of exporting brucellosis infected breeding cattle from the Designated Surveillance Areas

Daniel A Grear, PhD
U.S. Department of Agriculture
Animal and Plant Health Inspection Service
Veterinary Services
Science, Technology, and Analysis Services
October 20, 2014
The interim rule 75 FR 81090 requires States with a known wildlife reservoir to develop a brucellosis management plan to prevent the spread of brucellosis outside of these geographic areas.

State rule in Texas (2013) requiring post-entry monitoring and testing of DSA-origin breeding cattle, regardless of DSA testing.

ID, MT, and WY requested a risk assessment from VS.
The Risk Analysis Process

Hazard Identification

Risk Assessment
- Entry
- Exposure
- Consequences

Risk Communication

Risk Management
The Risk Analysis Process

Hazard Identification

- What could go wrong

Risk Assessment

- Pathways of introduction
- How likely is the event
- What are the consequences

Risk Management

- What are the mitigations
- What is the cost of mitigations, relative to consequences

Risk Communication

Transparency

- Stakeholder input
- Convey results
- Risk ≠ probability of event
- Risk = probability of event in context of risk management and consequences
Brucella abortus infected and undetected breeding cattle leaving the DSAs of Idaho, Montana, and Wyoming

- Focus is on interstate introductions
- 22 affected herds 2002-2013 within current DSA boundaries
 - 18 direct link to infection from wildlife
 - 4 linked to cattle traces from affected herds with most likely wildlife source
What is the benefit vs. cost of post-entry tests by receiving states?

• **Benefit** = avoiding introduction of *B. abortus*, weighted by the probability of exposure and effectiveness of the destination mitigation

• **Cost** = paying for post-entry testing and monitoring

• Livestock and trade issue: *economic objective*
What is the probability of a DSA herd having infected cattle (apparent herd prevalence)?

Entry pathways to estimate source herd infection rate and prevalence:

- Elk
- Purchased cattle

Pathways not evaluated:

- Bison: intensive management, no known transmission events
- Commuter grazing herd: timing of spring-summer entry overlaps with <5% of elk abortion events
What is the probability of a DSA herd having infected cattle (apparent herd prevalence)?

Entry pathways to estimate source herd infection rate:

• Elk
• Purchased cattle

Data: apparent herd prevalence and within-herd prevalence at detection 2002-2013.

Reflects interface ecology that has resulted in observed infection

Assumption: Conditions that have resulted in observed infection events are constant
Entry is limited to within current DSA boundaries
No statistical difference in apparent herd prevalence among states
Data: Within-Herd Prevalence, 2002-2013

No statistical difference in within herd prevalence among states
What is the probability of infected breeding cattle leaving the DSAs, undetected?

Exposure pathways:

• Breeding animals destined for breeding herds

• Feeding animals: test-eligible (sexually intact) removed from feeding chains post-movement (~4% NAHMS Feedlot)
Risk Assessment: Exposure

What is the probability of infected breeding cattle leaving the DSAs, undetected?

Data:

- **State brand inspection data** – number, size, and composition of shipments; number of DSA herds
- **NAHMs cow-calf survey** – supplement state shipment data, where necessary
- **DSA reviews** – number of DSA herds, testing regulations and compliance
- **Epidemiological reports** – apparent herd prevalence and within-herd prevalence
Risk Assessment: Exposure

What is the probability of infected breeding cattle leaving the DSAs, undetected?

Data:
• State brand inspection data
• NAHMs cow-calf survey
• DSA reviews
• Epi reports

Affected Herd prev → Within-herd prev → Out-shipments → Diagnostic testing

Sensitivity of:
RAP → FPA → CF
Test in series
What is the probability of infected breeding cattle leaving the DSAs, undetected?

Data:
- State brand inspection data
- NAHMs cow-calf survey
- DSA reviews
- Epi reports

Affected Herd prev \rightarrow Within-herd prev \rightarrow Out-shipments \rightarrow Diagnostic testing

Output:
rate of shipments leaving DSAs undetected with infected breeding cattle
What is the probability of infected breeding cattle leaving the DSAs, undetected?

Full Testing per DSA plans: 100% testing of test-eligible animals
All breeding shipments, ~40% of feeding shipments

Assumption: Compliance with movement testing regulations is at (or very close to) 100%
<table>
<thead>
<tr>
<th>State</th>
<th>Estimated number of breeding shipments per year</th>
<th>Average exposure per year [99% IQR]</th>
<th>Years per 1 average exposure</th>
<th>Average exposure per 1000 shipments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td>~250</td>
<td>0.006 [0-0]</td>
<td>167</td>
<td>0.024</td>
</tr>
<tr>
<td>Montana</td>
<td>~1000</td>
<td>0.009 [0-0]</td>
<td>111</td>
<td>0.009</td>
</tr>
<tr>
<td>Wyoming</td>
<td>~850</td>
<td>0.012 [0-1]</td>
<td>83</td>
<td>0.014</td>
</tr>
<tr>
<td>Combined DSAs</td>
<td>~2100</td>
<td>0.027 [0-1]</td>
<td>37</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Assumptions: Exposure per state is independent Entry conditions are constant
Risk Assessment: Exposure

- Idaho DSA
- Montana DSA
- Wyoming DSA
- Combined DSAs

Frequency of infected and undetected shipments per year (proportion out 1000 simulations)

- Idaho DSA: 0.994, 0.001
- Montana DSA: 0.991, 0.007
- Wyoming DSA: 0.987, 0.008
- Combined DSAs: 0.973, 0.018

Average infected and undetected shipments per year

- Idaho DSA: 0.994
- Montana DSA: 0.991
- Wyoming DSA: 0.987
- Combined DSAs: 0.973
Risk Mitigation

How much does post-entry testing and monitoring reduce exposure?

<table>
<thead>
<tr>
<th></th>
<th>Average exposure per year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposure assessment</td>
</tr>
<tr>
<td>Idaho</td>
<td>0.006</td>
</tr>
<tr>
<td>Montana</td>
<td>0.009</td>
</tr>
<tr>
<td>Wyoming</td>
<td>0.012</td>
</tr>
<tr>
<td>Full testing per DSA plan</td>
<td>0.027</td>
</tr>
</tbody>
</table>
How much would an outbreak have to cost to equal $$ spent on post-movement testing?

\[
\text{Exposure rate} \times \text{Post-entry detection} \times \text{Outbreak cost} = 1
\]

Benefits (outbreak costs avoided)

Cost of maintaining post-entry testing

Risk Estimation & Consequences

Accounting based on TAHC rules

Serological testing with pre- and post-calving health monitoring
How much would an outbreak have to cost to equal $$ spent on post-movement testing?

Exposure rate \times Post-entry detection \times Outbreak cost

Break-Even value of mitigation (not expected consequences)

$\frac{benefits \ (outbreaks \ costs \ avoided)}{cost \ of \ maintaining \ post \ entry \ testing} = 1$

Accounting based on TAHC rules
How much would an outbreak have to cost to equal $$ spent on post-movement testing?

\[
\text{Exposure rate} \times \text{Post-entry detection} \times \text{Outbreak cost} = 1
\]

Break-Even value of mitigation (not expected consequences)

\[
\frac{\text{benefits (outbreaks costs avoided)}}{\text{cost of maintaining post entry testing}} = 1
\]
Risk Estimation & Consequences

How much would an outbreak have to cost to equal $$ spent on post-movement testing?

Assumption:
• All breeding animals out of DSA are subject to post-movement mitigations
• No destination is more or less likely to receive infection = break-even value is the same for any receiving state

\[
\text{Cost of maintaining post entry testing} = \text{Exposure rate} \times \text{Post entry detection} = \text{benefits}
\]
How much would an outbreak have to cost to equal $$ spent on post-movement testing?

$100M’s

- $4.6M year\(^{-1}\) to test all breeding animals out of DSA
- Testing all DSA breeding animals = 40-60 years
How much would an outbreak have to cost to equal $$ spent on post-movement testing?

Perspective…

• A hypothetically big outbreak (100 affected herds with 100k breeding head subject to GYA DSA-like response and testing) ~$20-30M cost¹

• 1976: Economic cost of $120M (2014 dollars)
 1% nation-wide herd infection rate (2012 NASS ~7000 herds)
 0.7% animal infection rate (2012 NASS ~ 480k head)

• USDA slaughter surveillance goal is 1 in 100k

¹ 2008 MT economic assessment of DSA and Wilson (2011)- UWyo upper estimate of cost to producer of brucellosis in 400 head breeding herd test and slaughter
Information Gaps and Limitations

Entry and Exposure

• Undetected herds or time to detection
• Can’t explicitly account for variation owing to vaccination, elk dynamics, herd management, spatial location etc.
 – but we don’t need to under the objectives of the RA
• Can’t account for risk outside DSA boundaries
• Assumes relatively constant conditions
• Limitations on movement data to
 – Number of herds in DSA?
 – Link shipments to herds?

Consequences

• Epidemiological consequences- prospective modeling
• Impact of reduced national surveillance
Questions?

VS CEAH project team
Katie Portacci, DVM, MPH, DACVPM
Christine Kopral
Ken Forsyth, PhD
Joe Mlakar

Data Collection and Entry
State brand inspection divisions
Colorado State University- Dr. Colleen Webb

Risk Assessment Working group
Colorado Department of Agriculture
Idaho Department of Agriculture
Montana Division of Livestock
South Dakota Animal Industry Board
Texas Animal Health Commission
Wyoming Livestock Board
USDA VS District 5: ADD’s, Field Personnel, and Director’s office