The Impact of Movements and Animal Densities on Continental Scale Cattle Disease Outbreaks in the U.S

Daniel A Grear, PhD
Ecologist

U.S. Department of Agriculture
Animal and Plant Health Inspection Service
Veterinary Services
STAS
October 18, 2014
• Data:
 Interstate Cattle Transport Network
• Scaling up & filling in:
 Nation-wide Cattle Movements
• Framework for Disease Spread
ICVI Data Quick Summary

- 10% of 2009 Cattle Export ICVIs
- 19,000+ ICVIs
- 2433 counties from 49 states
- 1500+ student hours
- Currently expanding to multiple years
Data Match Multiple Descriptions of US System

- Dominated by shipments to and from Great Plains states
- 45% feeding / 17% breeding / 7% show
- Cattle amassed in large central feeding system from numerous, relatively small holdings (59% \(\leq 50 \) head)
- Beef/dairy shipments matches US herd (3:1, NASS)
Data Suggest County Scale

Number of In Shipments
Why Model Movement Data?

• Scale up 10% sample to full network
• Fill in unobserved intrastate movements
• Incorporate uncertainty- benefits of Bayesian approach
• Prediction
Distance Dependent Movement

- Kernel parameters to estimate
 - Width
 - Shape
 - Total number of movements
Source Sink Dynamics

- Spatially explicit, coarse summary of cattle industry

Historical cattle inflow

Farm number per county
U.S. Animal Movement Model

DATA
- ICVI data, 10% of interstate movements of cattle, county-level origin and destination
- Historical inflow of cattle, state-level
- Number of cattle farms per county

MODEL FITTING
- \(N_s \): total number of movements from state, \(s \)
- \(V_s \): width of distance kernel for movements from, \(s \)
- \(K_s \): shape of distance kernel for movements from, \(s \)

MODEL VALIDATION
- COUNTY LEVEL
 - OBSERVED NETWORK
 - FULL NETWORK GENERATION (county-county \(n \) realizations with parameter uncertainty)

- STATE LEVEL
 - Network Comparison
 - Node-level statistics
 - Global statistics (also with randomized networks; not illustrated)
 - Link identity and weight comparison (mantel test)

KERNEL GENERATED NETWORKS
sampled to be comparable to observed network
Predicts Network Characteristics

Data = state of origin and distances

Validating kernel predicted movements

Network structure

N_s: total number of movements from state, s

V_s: width of distance kernel for movements from, s

K_s: shape of distance kernel for movements from, s

Full network generation (county to county n realizations based on parameter uncertainty)

Sampled to be comparable to observed network: 10% of interstate movements, county-scale
Predictions had a high correlation to the **identity** and **volume** of links geographically.
Model Movements With Uncertainty

Observed vs. Simulated Movements

California

Nebraska

New York
Caveats and Improvements

• One year of data
 – Collected and analyzing 2 additional years

• Intrastate Validation
 – NAHMS data
 – Formal expert elicitation
 – Brand inspection

• Overdispersion

• Seasonality
 – Improvements to model structure
 – Additional years
U.S. Disease Outbreak Model

- Stochastic metapopulation model
 - counties are patches
- Within counties, individual premise is unit of infection
- Susceptible-Exposed-Infectious-Detected-Removed

Two modes of transmission

Long range movement based on shipping animals
- Parameters estimated from ICVI data using USAMM
- Uncertainty in movement incorporated from USAMM

Local, non-movement contacts from aerosol, direct or fomite transmission
- Density and distance dependent transmission
- Spatially localized within and between neighboring counties
- Used parameterization based on 2001 FMD outbreak in UK
- Applied sensitivity analysis to 5 parameters to explore impact on outputs
- Additional NASS data on US premises density and size distribution
Basic Equation:

\[W_C \frac{S_C I_C}{F_C} + \sum_{C} B_{C,C_1} \frac{S_C I_{C_1}}{F_{C_1}} + \sum_{C_2} M_{C,C_2} \frac{S_C I_{C_2}}{F_{C_2}} \]
Long Distance Movement Spread

- Daily probability of movement from USAMM
- Probability of I to S premise based on proportion of total premises in S and I classes
- Uses NASS data to determine total premises
- Assumes premises chosen randomly within county
Within County Spread

- Probability of I to S contact based on proportion of total premises in I and S categories
- Distance decay of transmission
Between County Spread

- Probability of I to S contact based on proportion of total premises in I and S categories
- Distance decay of transmission
This is a phenomenological integration of all non-movement mechanisms of spread including (but not limited to):

- Feed Trucks
- Milk Trucks
- Shared Equipment
- Shared Personnel

*challenging to parameterize
100 simulations of an infection seeded in each county, Each simulation uses a different realization of USAMM

- **Epidemic extent:**
 - number of counties infected
- **Infection risk:**
 - number of times a focal county is infected when infection is seeded in every other county in turn

We investigated the impact of movement restrictions on disease spread

- No control
- County Level Movement Ban
 - all movements from an infected county cease when the first livestock are detected in that county.
- State Level Movement Ban
 - all movements from an infected state cease when the first livestock are detected in that state.
Model Outbreak Predictions

No movement controls

Epidemic extent

Infection risk

Worst-case

Median
Movement and Local Spread

A

B

Nodes Infected

High out-degree
low density

Low out-degree
high density

PC 1

PC 2
Output is Sensitive to Disease Transmission Parameters

![Graph showing relative transmission risk vs distance (km) with lines for different values of α and θ.](image)

- $\alpha = 1.0, \theta = 1.0$
- $\alpha = 3.0, \theta = 1.0$
- $\alpha = 1.0, \theta = 3.0$
- $\alpha = 3.0, \theta = 3.0$
- $\alpha = 4.6, \theta = 1.6$

![Bar plot showing effect size for different parameters.](image)
Output is Sensitive to Disease Transmission Parameters

...but does not vary geographically.
Considering Movement Bans

Worst-case

Epidemic extent

Infection risk

No movement ban

County Movement ban
Sensitivity Analyses on Disease Control

Mean epidemic extent

Delay (days) 0 14 21 7

Effectiveness 100% 90% 75% 50% 0%
Conclusions: FAD Uncertainty

• Worst-case predictions are for introduction to the Central Plains or Ohio River Valley
 – Up to 1200 counties and 120,000 cattle premises

• Epidemics driven by combination of movement and farm density

• County level movement bans implemented quickly (even if less effectively) are similar to state level movement bans
 – Delay in movement ban implementation suggests effective, state level bans needed

Sensitivity analysis suggests that qualitative geographic results are robust to parameterization
Conclusions: Act Quickly

- Worst-case predictions are for introduction to the Central Plains or Ohio River Valley
 - Up to 1200 counties and 120,000 cattle premises

- Epidemics driven by combination of movement and farm density

- County level movement bans implemented quickly (even if less effectively) are similar to state level movement bans
 - Delay in movement ban implementation suggests effective, state level bans needed

Sensitivity analysis suggests that qualitative geographic results are robust to parameterization
In-Progress Improvements

More data
• Movement Inference from multiple years

Model Developments
• Farm location
• Seasonality and updates to movement components

Application
• Vaccination
Acknowledgements

- USDA
- DHS
- State Departments of Agriculture
- RAPIDD
- NIMBioS
- People
 - Uno Wennergren and Tom Lindstrom, *University of Linkopings*
 - Mike Tildesley and Marleen Werkman, *Nottingham University & Warwick University*
 - Matt Keeling, *Warwick University*
 - Michael Buhnerkempe, *UCLA*
 - Jason Lombard, Ryan Miller and Katie Portacci, *USDA CEAH*
Questions?
Predicts Network Characteristics

Network Centrality
- Captures most of distribution
- Missing extreme highly central counties