Michigan bovine TB Update

James Averill, DVM, PhD
Michigan Department of Agriculture and Rural Development
Outline

• Background
• Current status
• Mid-Michigan outbreak
• What’s next?
Background
Partnerships

- MI Dept. Natural Resources
- MI Dept. Community Health
- USDA-APHIS-VS & WS
- USDA-NRCS
- Michigan State University
- Michigan Cattle Industry
- Michigan Farm Bureau
- Michigan United Conservation Clubs
Program Structure

- Whole Herd Testing
- Movement Testing
- Movement Permits
- Outbreak Investigation
- Electronic ID
- Compliance

Risk of cattle to cattle transmission
Program Structure

- Hunter Surveillance
- Road Kill
- Wildlife Risk Mitigation

Risk of wildlife to cattle transmission
Current Status

Mesenteric lymph node

Mycobacteria bovis under microscope
Michigan Bovine Tuberculosis Zones
DRAFT November 8, 2010 DRAFT

[Map of Michigan showing different zones marked as TB FREE, MAZ, and MAAZ]
Cattle Numbers

• Over 1.9 million cattle tested
 – 40,000 + herds

• 60 Positive cattle operations
 – 78% within current MAZ

• 193 cattle found positive
White-Tailed Deer Numbers

- 732 of 200,006 found positive
 - 95% within the current MAZ
Wildlife Risk Mitigation

• Key principles
 – Feed cattle safely
 – Store feed safely
 – Water cattle safely

• Status
 – 1019 enrolled
 – 983 verified
Management of on-farm risk to livestock from bovine TB in white-tailed deer within Deer Management Unit 452:

Predictions from a spatially-explicit model

David Ramsey, Daniel O’Brien, James Averill, Melinda Cosgrove, Rick Smith, Stephen Schmitt, Brent Rudolph
Mid-Michigan Outbreak
Timeline

• **February 19** - cow discovered at slaughter

• **March 12** - Michigan strain of bovine TB

• **March 4-7** - herd TB tested

• **March 25** - MDARD designated 56th TB
 Affected herd since 1998

• **April** – Epidemiological investigation began

• **August 8** – Herd depopulated
Epidemiological Investigation

• Herd grown from within
 – Last female purchase mid 1990’s

• Buy bulls for breeding

• Seasonal breeding program

• Last whole herd test in 2001
Ante-Mortem Results

<table>
<thead>
<tr>
<th></th>
<th>Cohort</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulls</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>11-8</td>
<td>7-6</td>
<td>5-4</td>
</tr>
<tr>
<td>Population</td>
<td>7</td>
<td>65</td>
<td>66</td>
<td>71</td>
<td>167</td>
<td>26</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td># Reactors</td>
<td>1</td>
<td>17</td>
<td>23</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>% Reactors</td>
<td>14</td>
<td>26</td>
<td>35</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>% of Reactors</td>
<td>1</td>
<td>21</td>
<td>28</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>
Post-Mortem Results

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Bulls</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>11-8 Mo.</th>
<th>7-6 Mo.</th>
<th>5-4 Mo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>7</td>
<td>65</td>
<td>66</td>
<td>71</td>
<td>167</td>
<td>26</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td># Reactors</td>
<td>1</td>
<td>17</td>
<td>23</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td># Reactors Culture +</td>
<td>0</td>
<td>8</td>
<td>13</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Anatomic Site

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Thorax</th>
<th>Abdomen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Farm Layout

- Housing:
 - Free-stall barn
 - Pasture during growing season
 - Calving and newborns in same barn
 - Hutches used for calves
 - Summer barn
Potential Risk Factors

• Cattle movement
 – RFID

• Unpasteurized waste milk

• Hay

• Herd stressors

• Wildlife
Trace Numbers

• Over 200 traces
 – 3 source traces
 – Remainder exposed traces

• Led to 3 additional herds
 – Gratiot, Midland, and Arenac

• Traces to other states
 – IN, OH, IA, MN, NE
Circle Testing

- 225 cattle herds
 - 80% done
- 300 deer / year
 - 3 years
Wildlife/Animal Testing

<table>
<thead>
<tr>
<th>Wildlife</th>
<th># Tested</th>
<th># TB Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-Tailed Deer</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>Raccoons</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Opossums</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Cats</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Dog</td>
<td>1</td>
<td>?</td>
</tr>
</tbody>
</table>
Conclusions

• Disease seen across all age groups at various levels

• Explosion late spring 2012

• Multiple routes of exposure

• Not limited to cattle only

• No clear cause of infection
What’s Next
Risk Assessment

• Key questions:
 – Introduction from free-ranging deer
 – Introduction *M. bovis* from cattle in-shipments

• Data input:
 – Populations
 – Positive cases
 – Cattle movement
 – Wildlife risk mitigation
Preliminary Results

- Overall risk contained to MAZ
- Presque Isle moderate risk
- Low risk 6 MAAZ counties
Next Steps

- Draft report being reviewed
- MI will be asking some questions
- Restart MOU discussions
- Lead to Split State Status Application
18 Years Later

• Communication critical
 – Good or bad

• Risk mitigation helps control disease

• Thankful for RFID

• Eradication not likely for decades

• Still many unknowns
 – Research, research, research
Questions