Eliminating the Effects of Footrot on Sheep Flocks in the Northeastern United States

Brzozowski1, R., Settlemire T.2, Parker C.3, Lichtenwalner A.1,4, White S.5, Cockett N.6

1University of Maine Cooperative Extension, 2Bowdoin College Depts. of Biology and Chemistry*, 3Ohio Agricultural Research and Development Center*, 4University of Maine School of Food and Agriculture, 5USDA ARS Pullman WA, 6Dept. of Animal, Dairy and Veterinary Sciences, Utah State University

(*Emeritus)

Rationale for Study

Farming sheep in the Northeast

Small, diverse farms; wet conditions

Pasture rotation

Footbaths +/- trimming

Local reactions, efficacy

Vaccination: Foot Wax

Extra-label use, resistance

Antibiotics: Ivermectin, pen/strep, gamithromycin

Available methods for control

Classification of lesions based on keratinase activity

Bacterial etiologies: D. nodosus (virulent strains)

Predispensing factors

Footrot in sheep

Footbaths +/- trimming

Sheep flocks in the Northeastern United States

Eliminating the Effects of Footrot on Sheep Flocks in the Northeastern United States
D. nodosus invades deeply

Chronic Carriers: Cull
- Even after trimming, hooves will be deformed
Design

- Preliminary survey identified foot problems as a major concern
- Primarily a proof of concept
 - Extension: outreach and education
 - Sustainable Agriculture Research and Education
- Goals:
 - Educate farmers regarding foot care techniques
 - Guide development of biosecurity plans
 - Pathogen introduction and re-introduction
 - Comingling species elevates risk
 - Explore genetic differences related to susceptibility
 - 150 farmers will reduce footrot losses by 70% and will have farm biosecurity plans

Methods

- Farmer survey
- Farm visits
 - Biosecurity discussions/feedback
 - Demonstration of trimming and scoring feet
 - Assistance for farms with limited facilities/staff
- Blood collection at first or second visit: LTT, RTT
 - Serum banked
 - DNA extracted from a subset of plasma samples to establish correlation with susceptibility to footrot (WSU)
Sheep treatment

- Trim feet and score: 0-5; 0-3
- Foot dip in 10% zinc sulfate: >10 minutes
- Sort into “clean” and “dirty” groups
- Mark chronic cases and cull
- Dry clean area: >1 hour
- Move clean or dirty flocks into separate, clean pastures (rested for >2 wks)
- Repeat weekly for 1 month
Foot Bath

10% Zinc sulfate solution:
• 8.5 pounds zinc sulfate
• 10 gallons of water
• 1 cup of laundry detergent
• Mix well; add waste wool to footbath to improve footing and reduce splashing
• Winter: dry foot bath
 • Most farm visits during warm weather in this study

Results

• 22 farms participated
 • Approximately 1300 sheep
• 60-70% of farms footrot-free by end-of-study survey
 • Failures: why?
 • Not willing to cull
 • “Not enough proactive attention to animals’ feet on an ongoing basis…”
 • Got footrot after the end of the project
 • “I don’t know.”
• 1 of 22 farms did not benefit
• 1 of 22 farms repeated the program; persistent footrot
Of approximately 1300 samples sent to WSU, genomic DNA evaluated in 85 (56 Katahdin, 21 Merino, 1 Tuni, and 7 “unknown breed”) were classified into one of three groups:

- Footrot-free (n=28)
- Mild footrot (n=31)
- Severe footrot (n=26)

Genotyped using the Illumina Ovine 50K BeadChip. Case-control matching accounted for farm, breed, sex, and age. Linear regression analysis (PLINK) with a genome-wide significance threshold of 5×10^{-8} was performed. Reanalysis with a higher density chip suggests more markers: data is still being analyzed.
Results

• Typical responses:
 • Benefitted from learning techniques (trimming, footbathing, record keeping, other)
 • Financial benefit: modest ($0 to $5000/yr)
 • “We learned precisely what had to be done. What we didn't learn was how to make the farm manager keep his team doing it!”
 • “The sheep foot health project has made the difference between us getting out of the sheep business and continuing and now growing the flock.”

• Biggest barriers:
 • Culling
 • Separating sheep and keeping fencing intact
 • “Footrot is eradicated by culling, not curing, affected sheep.” (Joe Snyder DVM, AASRP)

Conclusions

• OAR18 region under investigation for gene content and potential functional variants
 • Possible genetic screening test for footrot resistance

• Producers are interested in this project
 • Webinars: >1000 views
 • Foot-trimming videos: >70,000 views
 • Webpage for project: >17,000 views

• Outcomes and projects
 • http://umaine.edu/sheep/
 • >18,000 visits; >70,000 views of video
 • Foot scoring card
 • Expansion of genetic results
Conclusions

- Reasons for failures:
 - Resistance to culling
 - Inability to reliably separate sheep
 - Limited pasture space or fencing configurations
 - Re-contamination via common pathways

- This method does not work for everyone.
 - Organic growers may adopt
 - Modified method with antibiotic use

- This method requires:
 - Good organization
 - Good fencing
 - Hard work
 - Culling some animals

- This method avoids:
 - Antibiotic costs and development of resistance
 - Vaccination costs and reactions
Acknowledgements

• Participating farmers
 Susan Schoenian, Maryland
• Staff: Ann Bryant
• Students:
 Nirajan Adhikari, Elaine Bernier, Casey Athanas, Katrina Glaude, Kayla Porcelli, Caitlin Minutolo
• Funding: NE SARE, Maine Agricultural Experiment Station, ASI (via Noelle Cockett)

References

• Cross RF, Parker CF. Zinc sulfate footbath for control of ovine footrot. JAVMA 178 (7) 1981.
• Experimental infection of sheep with ovine and bovine Dichelobacter nodosus isolates, Knappe-Poindecker M et al. Small Ruminant Res. 121, pp. 411-7. 2014.
• Jelinek PD and Depiazi LJ. Failure to eradicate ovine footrot associated with Dichelobacter nodosus strain A198 by repeated daily footbathing in zinc sulphate with surfactant. Aust Vet J. 81 (1-2) 2003.
Other UMaine SR Projects

- CL surveillance study
- Ovine *H. contortus* study
- EWE Maine Club

Scoring Footrot Lesions

All photos by
Anne Lichtenwalner DVM PhD
University of Maine Cooperative Extension
Evaluate the Whole Foot

- Clean by brushing or spraying
- Look at interdigital skin
- Look at sole (bottom of foot)
- Look at “white line”
 - May need to trim excess (folded) wall first
 - Differentiate between “pockets” and active lesions

Scoring system: original

- 1= no sign of infection
- 2= inflammation of interdigital skin, possible odor
- 3= odor, undermining/separation, lameness
- 4= excessive undermining; two or more feet affected, odor
- 5= chronic carrier (deformed feet)
Scoring system: evolved

- 1 = no sign of infection
- 2 = inflammation of interdigital skin, odor, undermining/separation, lameness
- 3 = Score 2 with two or more feet affected
- Chronic carrier = deformed feet; no active infection
- Pockets: no odor, some defect in wall/sole, no evidence of active infection

Scoring system: evolved

- 1 = no sign of infection
- 2 = inflammation of interdigital skin, odor, undermining/separation, lameness
- 3 = Score 2 with two or more feet affected
- Chronic carrier = deformed feet; no active infection
- Pockets: no odor, some defect in wall/sole, no evidence of active infection
Proper Tools

- Hoof knife and trimmers:
 - Sharpen with file/stone
 - Disinfect between sheep
 - Oil between uses

Sheep Restraint

- “Tip” the sheep
- Restrain in a “cradle”
 - Proper positioning in a metal and mesh cradle
 - Feet are easily and quickly trimmed
 - Most sheep become passive when “tipped”
Tip Tables

Score 1=Clean
Score 1 with Pocket

Pocket along sole and medial wall: no odor, no abnormal discharge

Score 2: Active Lesions

Trimming the toes reveals underrunning of the sole

Pockets: if no infection (odor, fluid), may be healing
Score 2: Active Lesions

• Deep defect in white line
• Foul smell

• Deep defect in sole
• Foul smell
Score 2 Trimmed

- Complete removal of infected material is possible

Score 3:
2 or more feet with footrot

Note severe underrunning of medial wall
Chronic Carriers: Cull

- Even after trimming, hooves will be deformed

Chronic Footrot

- Deep, long-standing infection
 - Deformed foot
- Thick walls
- Non-uniform
- Defects may extend to coronary band
- **Culling is necessary**